Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

An Open-Source Framework for Efficient Numerically-Tailored Computations (2406.02579v1)

Published 29 May 2024 in cs.MS, cs.AI, cs.AR, cs.LG, cs.NA, and math.NA

Abstract: We present a versatile open-source framework designed to facilitate efficient, numerically-tailored Matrix-Matrix Multiplications (MMMs). The framework offers two primary contributions: first, a fine-tuned, automated pipeline for arithmetic datapath generation, enabling highly customizable systolic MMM kernels; second, seamless integration of the generated kernels into user code, irrespective of the programming language employed, without necessitating modifications. The framework demonstrates a systematic enhancement in accuracy per energy cost across diverse High Performance Computing (HPC) workloads displaying a variety of numerical requirements, such as AI inference and Sea Surface Height (SSH) computation. For AI inference, we consider a set of state-of-the-art neural network models, namely ResNet18, ResNet34, ResNet50, DenseNet121, DenseNet161, DenseNet169, and VGG11, in conjunction with two datasets, two computer formats, and 27 distinct intermediate arithmetic datapaths. Our approach consistently reduces energy consumption across all cases, with a notable example being the reduction by factors of $3.3\times$ for IEEE754-32 and $1.4\times$ for Bfloat16 during ImageNet inference with ResNet50. This is accomplished while maintaining accuracies of $82.3\%$ and $86\%$, comparable to those achieved with conventional Floating-Point Units (FPUs). In the context of SSH computation, our method achieves fully-reproducible results using double-precision words, surpassing the accuracy of conventional double- and quad-precision arithmetic in FPUs. Our approach enhances SSH computation accuracy by a minimum of $5\times$ and $27\times$ compared to IEEE754-64 and IEEE754-128, respectively, resulting in $5.6\times$ and $15.1\times$ improvements in accuracy per power cost.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)