Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

ViDiT-Q: Efficient and Accurate Quantization of Diffusion Transformers for Image and Video Generation (2406.02540v3)

Published 4 Jun 2024 in cs.CV

Abstract: Diffusion transformers have demonstrated remarkable performance in visual generation tasks, such as generating realistic images or videos based on textual instructions. However, larger model sizes and multi-frame processing for video generation lead to increased computational and memory costs, posing challenges for practical deployment on edge devices. Post-Training Quantization (PTQ) is an effective method for reducing memory costs and computational complexity. When quantizing diffusion transformers, we find that existing quantization methods face challenges when applied to text-to-image and video tasks. To address these challenges, we begin by systematically analyzing the source of quantization error and conclude with the unique challenges posed by DiT quantization. Accordingly, we design an improved quantization scheme: ViDiT-Q (Video & Image Diffusion Transformer Quantization), tailored specifically for DiT models. We validate the effectiveness of ViDiT-Q across a variety of text-to-image and video models, achieving W8A8 and W4A8 with negligible degradation in visual quality and metrics. Additionally, we implement efficient GPU kernels to achieve practical 2-2.5x memory saving and a 1.4-1.7x end-to-end latency speedup.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.