Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tensor Network Space-Time Spectral Collocation Method for Solving the Nonlinear Convection Diffusion Equation (2406.02505v1)

Published 4 Jun 2024 in math.NA and cs.NA

Abstract: Spectral methods provide highly accurate numerical solutions for partial differential equations, exhibiting exponential convergence with the number of spectral nodes. Traditionally, in addressing time-dependent nonlinear problems, attention has been on low-order finite difference schemes for time discretization and spectral element schemes for spatial variables. However, our recent developments have resulted in the application of spectral methods to both space and time variables, preserving spectral convergence in both domains. Leveraging Tensor Train techniques, our approach tackles the curse of dimensionality inherent in space-time methods. Here, we extend this methodology to the nonlinear time-dependent convection-diffusion equation. Our discretization scheme exhibits a low-rank structure, facilitating translation to tensor-train (TT) format. Nevertheless, controlling the TT-rank across Newton's iterations, needed to deal with the nonlinearity, poses a challenge, leading us to devise the "Step Truncation TT-Newton" method. We demonstrate the exponential convergence of our methods through various benchmark examples. Importantly, our scheme offers significantly reduced memory requirement compared to the full-grid scheme.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: