Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Representing Piecewise-Linear Functions by Functions with Minimal Arity (2406.02421v1)

Published 4 Jun 2024 in cs.DM, cs.LG, and cs.SC

Abstract: Any continuous piecewise-linear function $F\colon \mathbb{R}{n}\to \mathbb{R}$ can be represented as a linear combination of $\max$ functions of at most $n+1$ affine-linear functions. In our previous paper [``Representing piecewise linear functions by functions with small arity'', AAECC, 2023], we showed that this upper bound of $n+1$ arguments is tight. In the present paper, we extend this result by establishing a correspondence between the function $F$ and the minimal number of arguments that are needed in any such decomposition. We show that the tessellation of the input space $\mathbb{R}{n}$ induced by the function $F$ has a direct connection to the number of arguments in the $\max$ functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: