Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Representing Piecewise-Linear Functions by Functions with Minimal Arity (2406.02421v1)

Published 4 Jun 2024 in cs.DM, cs.LG, and cs.SC

Abstract: Any continuous piecewise-linear function $F\colon \mathbb{R}{n}\to \mathbb{R}$ can be represented as a linear combination of $\max$ functions of at most $n+1$ affine-linear functions. In our previous paper [``Representing piecewise linear functions by functions with small arity'', AAECC, 2023], we showed that this upper bound of $n+1$ arguments is tight. In the present paper, we extend this result by establishing a correspondence between the function $F$ and the minimal number of arguments that are needed in any such decomposition. We show that the tessellation of the input space $\mathbb{R}{n}$ induced by the function $F$ has a direct connection to the number of arguments in the $\max$ functions.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com