Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Variance-Reduced Fast Krasnoselkii-Mann Methods for Finite-Sum Root-Finding Problems (2406.02413v3)

Published 4 Jun 2024 in math.OC and stat.ML

Abstract: We propose a new class of fast Krasnoselkii--Mann methods with variance reduction to solve a finite-sum co-coercive equation $Gx = 0$. Our algorithm is single-loop and leverages a new family of unbiased variance-reduced estimators specifically designed for a wider class of root-finding algorithms. Our method achieves both $\mathcal{O}(1/k2)$ and $o(1/k2)$ last-iterate convergence rates in terms of $\mathbb{E}[| Gxk|2]$, where $k$ is the iteration counter and $\mathbb{E}[\cdot]$ is the total expectation. We also establish almost sure $o(1/k2)$ convergence rates and the almost sure convergence of iterates ${xk}$ to a solution of $Gx=0$. We instantiate our framework for two prominent estimators: SVRG and SAGA. By an appropriate choice of parameters, both variants attain an oracle complexity of $\mathcal{O}(n + n{2/3}\epsilon{-1})$ to reach an $\epsilon$-solution, where $n$ represents the number of summands in the finite-sum operator $G$. Furthermore, under $\sigma$-strong quasi-monotonicity, our method achieves a linear convergence rate and an oracle complexity of $\mathcal{O}(n+ \max{n, n{2/3}\kappa} \log(\frac{1}{\epsilon}))$, where $\kappa := L/\sigma$. We extend our approach to solve a class of finite-sum inclusions (possibly nonmonotone), demonstrating that our schemes retain the same theoretical guarantees as in the equation setting. Finally, numerical experiments validate our algorithms and demonstrate their promising performance compared to state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets