Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 126 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the Intrinsic Self-Correction Capability of LLMs: Uncertainty and Latent Concept (2406.02378v2)

Published 4 Jun 2024 in cs.CL

Abstract: LLMs are able to improve their responses when instructed to do so, a capability known as self-correction. When instructions provide only the task's goal without specific details about potential issues in the response, LLMs must rely on their internal knowledge to improve response quality, a process referred to as intrinsic self-correction. The empirical success of intrinsic self-correction is evident in various applications, but how and why it is effective remains unknown. In this paper, we unveil that intrinsic self-correction can be progressively improved, allowing it to approach a converged state. Our findings are verified in: (1) the scenario of multi-round question answering, by comprehensively demonstrating that intrinsic self-correction can progressively introduce performance gains through iterative interactions, ultimately converging to stable performance; and (2) the context of intrinsic self-correction for enhanced morality, in which we provide empirical evidence that iteratively applying instructions reduces model uncertainty towards convergence, which then leads to convergence of both the calibration error and self-correction performance, ultimately resulting in a stable state of intrinsic self-correction. Furthermore, we introduce a mathematical formulation and a simulation task indicating that the latent concepts activated by self-correction instructions drive the reduction of model uncertainty. Based on our experimental results and analysis of the convergence of intrinsic self-correction, we reveal its underlying mechanism: consistent injected instructions reduce model uncertainty which yields converged, improved performance.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.