Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Towards Neural Architecture Search for Transfer Learning in 6G Networks (2406.02333v1)

Published 4 Jun 2024 in cs.NI, cs.AI, and cs.LG

Abstract: The future 6G network is envisioned to be AI-native, and as such, ML models will be pervasive in support of optimizing performance, reducing energy consumption, and in coping with increasing complexity and heterogeneity. A key challenge is automating the process of finding optimal model architectures satisfying stringent requirements stemming from varying tasks, dynamicity and available resources in the infrastructure and deployment positions. In this paper, we describe and review the state-of-the-art in Neural Architecture Search and Transfer Learning and their applicability in networking. Further, we identify open research challenges and set directions with a specific focus on three main requirements with elements unique to the future network, namely combining NAS and TL, multi-objective search, and tabular data. Finally, we outline and discuss both near-term and long-term work ahead.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.