Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Analyzing the Benefits of Prototypes for Semi-Supervised Category Learning (2406.02268v1)

Published 4 Jun 2024 in cs.LG

Abstract: Categories can be represented at different levels of abstraction, from prototypes focused on the most typical members to remembering all observed exemplars of the category. These representations have been explored in the context of supervised learning, where stimuli are presented with known category labels. We examine the benefits of prototype-based representations in a less-studied domain: semi-supervised learning, where agents must form unsupervised representations of stimuli before receiving category labels. We study this problem in a Bayesian unsupervised learning model called a variational auto-encoder, and we draw on recent advances in machine learning to implement a prior that encourages the model to use abstract prototypes to represent data. We apply this approach to image datasets and show that forming prototypes can improve semi-supervised category learning. Additionally, we study the latent embeddings of the models and show that these prototypes allow the models to form clustered representations without supervision, contributing to their success in downstream categorization performance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets