Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

PuFace: Defending against Facial Cloaking Attacks for Facial Recognition Models (2406.02253v1)

Published 4 Jun 2024 in cs.CV, cs.AI, and cs.CR

Abstract: The recently proposed facial cloaking attacks add invisible perturbation (cloaks) to facial images to protect users from being recognized by unauthorized facial recognition models. However, we show that the "cloaks" are not robust enough and can be removed from images. This paper introduces PuFace, an image purification system leveraging the generalization ability of neural networks to diminish the impact of cloaks by pushing the cloaked images towards the manifold of natural (uncloaked) images before the training process of facial recognition models. Specifically, we devise a purifier that takes all the training images including both cloaked and natural images as input and generates the purified facial images close to the manifold where natural images lie. To meet the defense goal, we propose to train the purifier on particularly amplified cloaked images with a loss function that combines image loss and feature loss. Our empirical experiment shows PuFace can effectively defend against two state-of-the-art facial cloaking attacks and reduces the attack success rate from 69.84\% to 7.61\% on average without degrading the normal accuracy for various facial recognition models. Moreover, PuFace is a model-agnostic defense mechanism that can be applied to any facial recognition model without modifying the model structure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)