Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Random Policy Evaluation Uncovers Policies of Generative Flow Networks (2406.02213v3)

Published 4 Jun 2024 in cs.LG

Abstract: The Generative Flow Network (GFlowNet) is a probabilistic framework in which an agent learns a stochastic policy and flow functions to sample objects proportionally to an unnormalized reward function. A number of recent works explored connections between GFlowNets and maximum entropy (MaxEnt) RL, which modifies the standard objective of RL agents by learning an entropy-regularized objective. However, the relationship between GFlowNets and standard RL remains largely unexplored, despite the inherent similarities in their sequential decision-making nature. While GFlowNets can discover diverse solutions through specialized flow-matching objectives, connecting them can simplify their implementation through established RL principles and improve RL's diverse solution discovery capabilities. In this paper, we bridge this gap by revealing a fundamental connection between GFlowNets and one RL's most basic components -- policy evaluation. Surprisingly, we find that the value function obtained from evaluating a uniform policy is closely associated with the flow functions in GFlowNets through the lens of flow iteration under certain structural conditions. Building upon these insights, we introduce a rectified random policy evaluation (RPE) algorithm, which achieves the same reward-matching effect as GFlowNets based on simply evaluating a fixed random policy in these cases, offering a new perspective. Empirical results across extensive benchmarks demonstrate that RPE achieves competitive results compared to previous approaches, shedding light on the previously overlooked connection between (non-MaxEnt) RL and GFlowNets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 1 like.