Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Dynamics and non-integrability of the double spring pendulum (2406.02200v2)

Published 4 Jun 2024 in nlin.CD

Abstract: This paper investigates the dynamics and integrability of the double spring pendulum, which has great importance in studying nonlinear dynamics, chaos, and bifurcations. Being a Hamiltonian system with three degrees of freedom, its analysis presents a significant challenge. To gain insight into the system's dynamics, we employ various numerical methods, including Lyapunov exponents spectra, phase-parametric diagrams, and Poincar\'e cross-sections. The novelty of our work lies in the integration of these three numerical methods into one powerful tool. We provide a comprehensive understanding of the system's dynamics by identifying parameter values or initial conditions that lead to hyper-chaotic, chaotic, quasi-periodic, and periodic motion, which is a novel contribution in the context of Hamiltonian systems. In the absence of gravitational potential, the system exhibits $S1$ symmetry, and the presence of an additional first integral was identified using Lyapunov exponents diagrams. We demonstrate the effective utilisation of Lyapunov exponents as a potential indicator of first integrals and integrable dynamics. The numerical analysis is complemented by an analytical proof regarding the non-integrability of the system. This proof relies on the analysis of properties of the differential Galois group of variational equations along specific solutions of the system. To facilitate this analysis, we utilised a newly developed extension of the Kovacic algorithm specifically designed for fourth-order differential equations. Overall, our study sheds light on the intricate dynamics and integrability of the double spring pendulum, offering new insights and methodologies for further research in this field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: