Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pairwise Ranking Loss for Multi-Task Learning in Recommender Systems (2406.02163v2)

Published 4 Jun 2024 in cs.IR

Abstract: Multi-Task Learning (MTL) plays a crucial role in real-world advertising applications such as recommender systems, aiming to achieve robust representations while minimizing resource consumption. MTL endeavors to simultaneously optimize multiple tasks to construct a unified model serving diverse objectives. In online advertising systems, tasks like Click-Through Rate (CTR) and Conversion Rate (CVR) are often treated as MTL problems concurrently. However, it has been overlooked that a conversion ($y_{cvr}=1$) necessitates a preceding click ($y_{ctr}=1$). In other words, while certain CTR tasks are associated with corresponding conversions, others lack such associations. Moreover, the likelihood of noise is significantly higher in CTR tasks where conversions do not occur compared to those where they do, and existing methods lack the ability to differentiate between these two scenarios. In this study, exposure labels corresponding to conversions are regarded as definitive indicators, and a novel task-specific loss is introduced by calculating a \textbf{p}air\textbf{wise} \textbf{r}anking (PWiseR) loss between model predictions, manifesting as pairwise ranking loss, to encourage the model to rely more on them. To demonstrate the effect of the proposed loss function, experiments were conducted on different MTL and Single-Task Learning (STL) models using four distinct public MTL datasets, namely Alibaba FR, NL, US, and CCP, along with a proprietary industrial dataset. The results indicate that our proposed loss function outperforms the BCE loss function in most cases in terms of the AUC metric.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Hasan Saribas (6 papers)
  2. Said Aldemir (3 papers)
  3. Junyan Yang (6 papers)
  4. Hakan Cevikalp (12 papers)
  5. Furkan Durmus (2 papers)

Summary

We haven't generated a summary for this paper yet.