MS-Mapping: Multi-session LiDAR Mapping with Wasserstein-based Keyframe Selection (2406.02096v2)
Abstract: Large-scale multi-session LiDAR mapping is crucial for various applications but still faces significant challenges in data redundancy, memory consumption, and efficiency. This paper presents MS-Mapping, a novel multi-session LiDAR mapping system that incorporates an incremental mapping scheme to enable efficient map assembly in large-scale environments. To address the data redundancy and improve graph optimization efficiency caused by the vast amount of point cloud data, we introduce a real-time keyframe selection method based on the Wasserstein distance. Our approach formulates the LiDAR point cloud keyframe selection problem using a similarity method based on Gaussian mixture models (GMM) and addresses the real-time challenge by employing an incremental voxel update method. To facilitate further research and development in the community, we make our code\footnote{https://github.com/JokerJohn/MS-Mapping} and datasets publicly available.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.