Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Orthogonal Causal Calibration (2406.01933v2)

Published 4 Jun 2024 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: Estimates of heterogeneous treatment effects such as conditional average treatment effects (CATEs) and conditional quantile treatment effects (CQTEs) play an important role in real-world decision making. Given this importance, one should ensure these estimates are calibrated. While there is a rich literature on calibrating estimators of non-causal parameters, very few methods have been derived for calibrating estimators of causal parameters, or more generally estimators of quantities involving nuisance parameters. In this work, we develop general algorithms for reducing the task of causal calibration to that of calibrating a standard (non-causal) predictive model. Throughout, we study a notion of calibration defined with respect to an arbitrary, nuisance-dependent loss $\ell$, under which we say an estimator $\theta$ is calibrated if its predictions cannot be changed on any level set to decrease loss. For losses $\ell$ satisfying a condition called universal orthogonality, we present a simple algorithm that transforms partially-observed data into generalized pseudo-outcomes and applies any off-the-shelf calibration procedure. For losses $\ell$ satisfying a weaker assumption called conditional orthogonality, we provide a similar sample splitting algorithm the performs empirical risk minimization over an appropriately defined class of functions. Convergence of both algorithms follows from a generic, two term upper bound of the calibration error of any model. We demonstrate the practical applicability of our results in experiments on both observational and synthetic data. Our results are exceedingly general, showing that essentially any existing calibration algorithm can be used in causal settings, with additional loss only arising from errors in nuisance estimation.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com