Eliciting the Priors of Large Language Models using Iterated In-Context Learning (2406.01860v1)
Abstract: As LLMs are increasingly deployed in real-world settings, understanding the knowledge they implicitly use when making decisions is critical. One way to capture this knowledge is in the form of Bayesian prior distributions. We develop a prompt-based workflow for eliciting prior distributions from LLMs. Our approach is based on iterated learning, a Markov chain Monte Carlo method in which successive inferences are chained in a way that supports sampling from the prior distribution. We validated our method in settings where iterated learning has previously been used to estimate the priors of human participants -- causal learning, proportion estimation, and predicting everyday quantities. We found that priors elicited from GPT-4 qualitatively align with human priors in these settings. We then used the same method to elicit priors from GPT-4 for a variety of speculative events, such as the timing of the development of superhuman AI.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.