Hybrid-Learning Video Moment Retrieval across Multi-Domain Labels (2406.01791v1)
Abstract: Video moment retrieval (VMR) is to search for a visual temporal moment in an untrimmed raw video by a given text query description (sentence). Existing studies either start from collecting exhaustive frame-wise annotations on the temporal boundary of target moments (fully-supervised), or learn with only the video-level video-text pairing labels (weakly-supervised). The former is poor in generalisation to unknown concepts and/or novel scenes due to restricted dataset scale and diversity under expensive annotation costs; the latter is subject to visual-textual mis-correlations from incomplete labels. In this work, we introduce a new approach called hybrid-learning video moment retrieval to solve the problem by knowledge transfer through adapting the video-text matching relationships learned from a fully-supervised source domain to a weakly-labelled target domain when they do not share a common label space. Our aim is to explore shared universal knowledge between the two domains in order to improve model learning in the weakly-labelled target domain. Specifically, we introduce a multiplE branch Video-text Alignment model (EVA) that performs cross-modal (visual-textual) matching information sharing and multi-modal feature alignment to optimise domain-invariant visual and textual features as well as per-task discriminative joint video-text representations. Experiments show EVA's effectiveness in exploring temporal segment annotations in a source domain to help learn video moment retrieval without temporal labels in a target domain.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.