Region-aware Grasp Framework with Normalized Grasp Space for Efficient 6-DoF Grasping (2406.01767v3)
Abstract: A series of region-based methods succeed in extracting regional features and enhancing grasp detection quality. However, faced with a cluttered scene with potential collision, the definition of the grasp-relevant region stays inconsistent, and the relationship between grasps and regional spaces remains incompletely investigated. In this paper, we propose Normalized Grasp Space (NGS) from a novel region-aware viewpoint, unifying the grasp representation within a normalized regional space and benefiting the generalizability of methods. Leveraging the NGS, we find that CNNs are underestimated for 3D feature extraction and 6-DoF grasp detection in clutter scenes and build a highly efficient Region-aware Normalized Grasp Network (RNGNet). Experiments on the public benchmark show that our method achieves significant >20% performance gains while attaining a real-time inference speed of approximately 50 FPS. Real-world cluttered scene clearance experiments underscore the effectiveness of our method. Further, human-to-robot handover and dynamic object grasping experiments demonstrate the potential of our proposed method for closed-loop grasping in dynamic scenarios.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.