Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

RecDiff: Diffusion Model for Social Recommendation (2406.01629v1)

Published 1 Jun 2024 in cs.IR, cs.AI, and cs.SI

Abstract: Social recommendation has emerged as a powerful approach to enhance personalized recommendations by leveraging the social connections among users, such as following and friend relations observed in online social platforms. The fundamental assumption of social recommendation is that socially-connected users exhibit homophily in their preference patterns. This means that users connected by social ties tend to have similar tastes in user-item activities, such as rating and purchasing. However, this assumption is not always valid due to the presence of irrelevant and false social ties, which can contaminate user embeddings and adversely affect recommendation accuracy. To address this challenge, we propose a novel diffusion-based social denoising framework for recommendation (RecDiff). Our approach utilizes a simple yet effective hidden-space diffusion paradigm to alleivate the noisy effect in the compressed and dense representation space. By performing multi-step noise diffusion and removal, RecDiff possesses a robust ability to identify and eliminate noise from the encoded user representations, even when the noise levels vary. The diffusion module is optimized in a downstream task-aware manner, thereby maximizing its ability to enhance the recommendation process. We conducted extensive experiments to evaluate the efficacy of our framework, and the results demonstrate its superiority in terms of recommendation accuracy, training efficiency, and denoising effectiveness. The source code for the model implementation is publicly available at: https://github.com/HKUDS/RecDiff.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: