Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting Prediction Sets to Distribution Shifts Without Labels (2406.01416v2)

Published 3 Jun 2024 in cs.LG and stat.ML

Abstract: Recently there has been a surge of interest to deploy confidence set predictions rather than point predictions in machine learning. Unfortunately, the effectiveness of such prediction sets is frequently impaired by distribution shifts in practice, and the challenge is often compounded by the lack of ground truth labels at test time. Focusing on a standard set-valued prediction framework called conformal prediction (CP), this paper studies how to improve its practical performance using only unlabeled data from the shifted test domain. This is achieved by two new methods called ECP and EACP, whose main idea is to adjust the score function in CP according to its base model's own uncertainty evaluation. Through extensive experiments on a number of large-scale datasets and neural network architectures, we show that our methods provide consistent improvement over existing baselines and nearly match the performance of fully supervised methods.

Summary

We haven't generated a summary for this paper yet.