Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Using Constraints to Discover Sparse and Alternative Subgroup Descriptions (2406.01411v2)

Published 3 Jun 2024 in cs.LG

Abstract: Subgroup-discovery methods allow users to obtain simple descriptions of interesting regions in a dataset. Using constraints in subgroup discovery can enhance interpretability even further. In this article, we focus on two types of constraints: First, we limit the number of features used in subgroup descriptions, making the latter sparse. Second, we propose the novel optimization problem of finding alternative subgroup descriptions, which cover a similar set of data objects as a given subgroup but use different features. We describe how to integrate both constraint types into heuristic subgroup-discovery methods. Further, we propose a novel Satisfiability Modulo Theories (SMT) formulation of subgroup discovery as a white-box optimization problem, which allows solver-based search for subgroups and is open to a variety of constraint types. Additionally, we prove that both constraint types lead to an NP-hard optimization problem. Finally, we employ 27 binary-classification datasets to compare algorithmic and solver-based search for unconstrained and constrained subgroup discovery. We observe that heuristic search methods often yield high-quality subgroups within a short runtime, also in scenarios with constraints.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.