Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Zero-Shot Out-of-Distribution Detection with Outlier Label Exposure (2406.01170v1)

Published 3 Jun 2024 in cs.CV

Abstract: As vision-LLMs like CLIP are widely applied to zero-shot tasks and gain remarkable performance on in-distribution (ID) data, detecting and rejecting out-of-distribution (OOD) inputs in the zero-shot setting have become crucial for ensuring the safety of using such models on the fly. Most existing zero-shot OOD detectors rely on ID class label-based prompts to guide CLIP in classifying ID images and rejecting OOD images. In this work we instead propose to leverage a large set of diverse auxiliary outlier class labels as pseudo OOD class text prompts to CLIP for enhancing zero-shot OOD detection, an approach we called Outlier Label Exposure (OLE). The key intuition is that ID images are expected to have lower similarity to these outlier class prompts than OOD images. One issue is that raw class labels often include noise labels, e.g., synonyms of ID labels, rendering raw OLE-based detection ineffective. To address this issue, we introduce an outlier prototype learning module that utilizes the prompt embeddings of the outlier labels to learn a small set of pivotal outlier prototypes for an embedding similarity-based OOD scoring. Additionally, the outlier classes and their prototypes can be loosely coupled with the ID classes, leading to an inseparable decision region between them. Thus, we also introduce an outlier label generation module that synthesizes our outlier prototypes and ID class embeddings to generate in-between outlier prototypes to further calibrate the detection in OLE. Despite its simplicity, extensive experiments show that OLE substantially improves detection performance and achieves new state-of-the-art performance in large-scale OOD and hard OOD detection benchmarks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.