Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A 0.96pJ/SOP, 30.23K-neuron/mm^2 Heterogeneous Neuromorphic Chip With Fullerene-like Interconnection Topology for Edge-AI Computing (2406.01151v1)

Published 3 Jun 2024 in cs.AR

Abstract: Edge-AI computing requires high energy efficiency, low power consumption, and relatively high flexibility and compact area, challenging the AI-chip design. This work presents a 0.96 pJ/SOP heterogeneous neuromorphic system-on-chip (SoC) with fullerene-like interconnection topology for edge-AI computing. The neuromorphic core integrates different technologies to augment computing energy efficiency, including sparse computing, partial membrane potential updates, and non-uniform weight quantization. Multiple neuromorphic cores and multi-mode routers form a fullerene-like network-on-chip (NoC). The average degree of communication nodes exceeds traditional topologies by 32%, with a minimal degree variance of 0.93, allowing advanced decentralized on-chip communication. Additionally, the NoC can be scaled up through extended off-chip high-level router nodes. A RISC-V CPU and a neuromorphic processor are tightly coupled and fabricated within a 5.42 mm2 die area under 55 nm CMOS technology. The chip has a low power density of 0.52 mW/mm2, reducing 67.5% compared to related works, and achieves a high neuron density of 30.23 K/mm2. Eventually, the chip is demonstrated to be effective on different datasets and achieves 0.96 pJ/SOP energy efficiency.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: