Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid Automated Program Repair by Combining Large Language Models and Program Analysis (2406.00992v2)

Published 3 Jun 2024 in cs.SE

Abstract: Automated Program Repair (APR) has garnered significant attention due to its potential to streamline the bug repair process for human developers. Recently, LLM-based APR methods have shown promise in repairing real-world bugs. However, existing APR methods often utilize patches generated by LLMs without further optimization, resulting in reduced effectiveness due to the lack of program-specific knowledge. Furthermore, the evaluations of these APR methods have typically been conducted under the assumption of perfect fault localization, which may not accurately reflect their real-world effectiveness. To address these limitations, this paper introduces an innovative APR approach called GIANTREPAIR. Our approach leverages the insight that LLM-generated patches, although not necessarily correct, offer valuable guidance for the patch generation process. Based on this insight, GIANTREPAIR first constructs patch skeletons from LLM-generated patches to confine the patch space, and then generates high-quality patches tailored to specific programs through context-aware patch generation by instantiating the skeletons. To evaluate the performance of our approach, we conduct two large-scale experiments. The results demonstrate that GIANTREPAIR not only effectively repairs more bugs (an average of 27.78% on Defects4J v1.2 and 23.40% on Defects4J v2.0) than using LLM-generated patches directly, but also outperforms state-of-the-art APR methods by repairing at least 42 and 7 more bugs under perfect and automated fault localization scenarios, respectively.

Citations (2)

Summary

We haven't generated a summary for this paper yet.