Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Theory for Token-Level Harmonization in Retrieval-Augmented Generation (2406.00944v3)

Published 3 Jun 2024 in cs.CL, cs.AI, and cs.IR

Abstract: Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance LLMs. Studies show that while RAG provides valuable external information (benefit), it may also mislead LLMs (detriment) with noisy or incorrect retrieved texts. Although many existing methods attempt to preserve benefit and avoid detriment, they lack a theoretical explanation for RAG. The benefit and detriment in the next token prediction of RAG remain a black box that cannot be quantified or compared in an explainable manner, so existing methods are data-driven, need additional utility evaluators or post-hoc. This paper takes the first step towards providing a theory to explain and trade off the benefit and detriment in RAG. First, we model RAG as the fusion between distribution of LLMs knowledge and distribution of retrieved texts. Then, we formalize the trade-off between the value of external knowledge (benefit) and its potential risk of misleading LLMs (detriment) in next token prediction of RAG by distribution difference in this fusion. Finally, we prove that the actual effect of RAG on the token, which is the comparison between benefit and detriment, can be predicted without any training or accessing the utility of retrieval. Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG at token level to preserve benefit and avoid detriment. Experiments in real-world tasks using LLMs such as OPT, LLaMA-2, and Mistral show the effectiveness of our method and support our theoretical findings.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube