Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel (2406.00924v2)

Published 3 Jun 2024 in cs.LG, cs.DS, math.ST, stat.ML, and stat.TH

Abstract: Sampling algorithms play an important role in controlling the quality and runtime of diffusion model inference. In recent years, a number of works~\cite{chen2023sampling,chen2023ode,benton2023error,lee2022convergence} have proposed schemes for diffusion sampling with provable guarantees; these works show that for essentially any data distribution, one can approximately sample in polynomial time given a sufficiently accurate estimate of its score functions at different noise levels. In this work, we propose a new scheme inspired by Shen and Lee's randomized midpoint method for log-concave sampling~\cite{ShenL19}. We prove that this approach achieves the best known dimension dependence for sampling from arbitrary smooth distributions in total variation distance ($\widetilde O(d{5/12})$ compared to $\widetilde O(\sqrt{d})$ from prior work). We also show that our algorithm can be parallelized to run in only $\widetilde O(\log2 d)$ parallel rounds, constituting the first provable guarantees for parallel sampling with diffusion models. As a byproduct of our methods, for the well-studied problem of log-concave sampling in total variation distance, we give an algorithm and simple analysis achieving dimension dependence $\widetilde O(d{5/12})$ compared to $\widetilde O(\sqrt{d})$ from prior work.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.