Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
9 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
40 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lasso Bandit with Compatibility Condition on Optimal Arm (2406.00823v2)

Published 2 Jun 2024 in stat.ML and cs.LG

Abstract: We consider a stochastic sparse linear bandit problem where only a sparse subset of context features affects the expected reward function, i.e., the unknown reward parameter has a sparse structure. In the existing Lasso bandit literature, the compatibility conditions, together with additional diversity conditions on the context features are imposed to achieve regret bounds that only depend logarithmically on the ambient dimension $d$. In this paper, we demonstrate that even without the additional diversity assumptions, the \textit{compatibility condition on the optimal arm} is sufficient to derive a regret bound that depends logarithmically on $d$, and our assumption is strictly weaker than those used in the lasso bandit literature under the single-parameter setting. We propose an algorithm that adapts the forced-sampling technique and prove that the proposed algorithm achieves $O(\text{poly}\log dT)$ regret under the margin condition. To our knowledge, the proposed algorithm requires the weakest assumptions among Lasso bandit algorithms under the single-parameter setting that achieve $O(\text{poly}\log dT)$ regret. Through numerical experiments, we confirm the superior performance of our proposed algorithm.

Summary

We haven't generated a summary for this paper yet.