Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

AI-Face: A Million-Scale Demographically Annotated AI-Generated Face Dataset and Fairness Benchmark (2406.00783v3)

Published 2 Jun 2024 in cs.CV

Abstract: AI-generated faces have enriched human life, such as entertainment, education, and art. However, they also pose misuse risks. Therefore, detecting AI-generated faces becomes crucial, yet current detectors show biased performance across different demographic groups. Mitigating biases can be done by designing algorithmic fairness methods, which usually require demographically annotated face datasets for model training. However, no existing dataset encompasses both demographic attributes and diverse generative methods simultaneously, which hinders the development of fair detectors for AI-generated faces. In this work, we introduce the AI-Face dataset, the first million-scale demographically annotated AI-generated face image dataset, including real faces, faces from deepfake videos, and faces generated by Generative Adversarial Networks and Diffusion Models. Based on this dataset, we conduct the first comprehensive fairness benchmark to assess various AI face detectors and provide valuable insights and findings to promote the future fair design of AI face detectors. Our AI-Face dataset and benchmark code are publicly available at https://github.com/Purdue-M2/AI-Face-FairnessBench

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com