Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Task-oriented Embedding Counts: Heuristic Clustering-driven Feature Fine-tuning for Whole Slide Image Classification (2406.00672v1)

Published 2 Jun 2024 in cs.CV

Abstract: In the field of whole slide image (WSI) classification, multiple instance learning (MIL) serves as a promising approach, commonly decoupled into feature extraction and aggregation. In this paradigm, our observation reveals that discriminative embeddings are crucial for aggregation to the final prediction. Among all feature updating strategies, task-oriented ones can capture characteristics specifically for certain tasks. However, they can be prone to overfitting and contaminated by samples assigned with noisy labels. To address this issue, we propose a heuristic clustering-driven feature fine-tuning method (HC-FT) to enhance the performance of multiple instance learning by providing purified positive and hard negative samples. Our method first employs a well-trained MIL model to evaluate the confidence of patches. Then, patches with high confidence are marked as positive samples, while the remaining patches are used to identify crucial negative samples. After two rounds of heuristic clustering and selection, purified positive and hard negative samples are obtained to facilitate feature fine-tuning. The proposed method is evaluated on both CAMELYON16 and BRACS datasets, achieving an AUC of 97.13% and 85.85%, respectively, consistently outperforming all compared methods.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube