Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

From Effectiveness to Efficiency: Uncovering Linguistic Bias in Large Language Model-based Code Generation (2406.00602v2)

Published 2 Jun 2024 in cs.SE and cs.PL

Abstract: LLMs have demonstrated promising capabilities for code generation. While existing benchmarks evaluate the correctness and efficiency of LLM-generated code, the potential linguistic bias - where code quality varies based on the natural language used to describe programming tasks - remains underexplored. In this paper, we aim to investigate this linguistic bias through the lens of English and Chinese. To facilitate our investigation, we present a unified evaluation framework comprising a curated dataset of 52 Python programming questions with parallel bilingual task descriptions, automated correctness verification, and efficiency quantification tools based on runtime complexity estimation. Based on this framework, we conduct the first empirical study towards the linguistic bias in LLM-generated code on eight popular LCGMs, as well as GPT-3.5-Turbo and GPT-4. We observe that these LCGM-generated code show different correctness on an average of 12% bilingual programming tasks, where 39% also exhibits diverse efficiency. Our findings indicate that LLMs commonly exhibit linguistic bias for code generation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube