Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Efficient Neural Light Fields (ENeLF) for Mobile Devices (2406.00598v1)

Published 2 Jun 2024 in cs.CV

Abstract: Novel view synthesis (NVS) is a challenge in computer vision and graphics, focusing on generating realistic images of a scene from unobserved camera poses, given a limited set of authentic input images. Neural radiance fields (NeRF) achieved impressive results in rendering quality by utilizing volumetric rendering. However, NeRF and its variants are unsuitable for mobile devices due to the high computational cost of volumetric rendering. Emerging research in neural light fields (NeLF) eliminates the need for volumetric rendering by directly learning a mapping from ray representation to pixel color. NeLF has demonstrated its capability to achieve results similar to NeRF but requires a more extensive, computationally intensive network that is not mobile-friendly. Unlike existing works, this research builds upon the novel network architecture introduced by MobileR2L and aggressively applies a compression technique (channel-wise structure pruning) to produce a model that runs efficiently on mobile devices with lower latency and smaller sizes, with a slight decrease in performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)