Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Towards Generalizable Multi-Object Tracking (2406.00429v1)

Published 1 Jun 2024 in cs.CV

Abstract: Multi-Object Tracking MOT encompasses various tracking scenarios, each characterized by unique traits. Effective trackers should demonstrate a high degree of generalizability across diverse scenarios. However, existing trackers struggle to accommodate all aspects or necessitate hypothesis and experimentation to customize the association information motion and or appearance for a given scenario, leading to narrowly tailored solutions with limited generalizability. In this paper, we investigate the factors that influence trackers generalization to different scenarios and concretize them into a set of tracking scenario attributes to guide the design of more generalizable trackers. Furthermore, we propose a point-wise to instance-wise relation framework for MOT, i.e., GeneralTrack, which can generalize across diverse scenarios while eliminating the need to balance motion and appearance. Thanks to its superior generalizability, our proposed GeneralTrack achieves state-of-the-art performance on multiple benchmarks and demonstrates the potential for domain generalization. https://github.com/qinzheng2000/GeneralTrack.git

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube