Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficient Historical Butterfly Counting in Large Temporal Bipartite Networks via Graph Structure-aware Index (2406.00344v2)

Published 1 Jun 2024 in cs.SI and cs.DB

Abstract: Bipartite graphs are ubiquitous in many domains, e.g., e-commerce platforms, social networks, and academia, by modeling interactions between distinct entity sets. Within these graphs, the butterfly motif, a complete 2*2 biclique, represents the simplest yet significant subgraph structure, crucial for analyzing complex network patterns. Counting the butterflies offers significant benefits across various applications, including community analysis and recommender systems. Additionally, the temporal dimension of bipartite graphs, where edges activate within specific time frames, introduces the concept of historical butterfly counting, i.e., counting butterflies within a given time interval. This temporal analysis sheds light on the dynamics and evolution of network interactions, offering new insights into their mechanisms. Despite its importance, no existing algorithm can efficiently solve the historical butterfly counting task. To address this, we design two novel indices whose memory footprints are dependent on #butterflies and #wedges, respectively. Combining these indices, we propose a graph structure-aware indexing approach that significantly reduces memory usage while preserving exceptional query speed. We theoretically prove that our approach is particularly advantageous on power-law graphs, a common characteristic of real-world bipartite graphs, by surpassing traditional complexity barriers for general graphs. Extensive experiments reveal that our query algorithms outperform existing methods by up to five magnitudes, effectively balancing speed with manageable memory requirements.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.