Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal bounds for $\ell_p$ sensitivity sampling via $\ell_2$ augmentation (2406.00328v1)

Published 1 Jun 2024 in cs.DS, cs.LG, and stat.ML

Abstract: Data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points proportional to an individual importance measure called sensitivity. This framework reduces in very general settings the size of data to roughly the VC dimension $d$ times the total sensitivity $\mathfrak S$ while providing strong $(1\pm\varepsilon)$ guarantees on the quality of approximation. The recent work of Woodruff & Yasuda (2023c) improved substantially over the general $\tilde O(\varepsilon{-2}\mathfrak Sd)$ bound for the important problem of $\ell_p$ subspace embeddings to $\tilde O(\varepsilon{-2}\mathfrak S{2/p})$ for $p\in[1,2]$. Their result was subsumed by an earlier $\tilde O(\varepsilon{-2}\mathfrak Sd{1-p/2})$ bound which was implicitly given in the work of Chen & Derezinski (2021). We show that their result is tight when sampling according to plain $\ell_p$ sensitivities. We observe that by augmenting the $\ell_p$ sensitivities by $\ell_2$ sensitivities, we obtain better bounds improving over the aforementioned results to optimal linear $\tilde O(\varepsilon{-2}(\mathfrak S+d)) = \tilde O(\varepsilon{-2}d)$ sampling complexity for all $p \in [1,2]$. In particular, this resolves an open question of Woodruff & Yasuda (2023c) in the affirmative for $p \in [1,2]$ and brings sensitivity subsampling into the regime that was previously only known to be possible using Lewis weights (Cohen & Peng, 2015). As an application of our main result, we also obtain an $\tilde O(\varepsilon{-2}\mu d)$ sensitivity sampling bound for logistic regression, where $\mu$ is a natural complexity measure for this problem. This improves over the previous $\tilde O(\varepsilon{-2}\mu2 d)$ bound of Mai et al. (2021) which was based on Lewis weights subsampling.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube