Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Optimal bounds for $\ell_p$ sensitivity sampling via $\ell_2$ augmentation (2406.00328v1)

Published 1 Jun 2024 in cs.DS, cs.LG, and stat.ML

Abstract: Data subsampling is one of the most natural methods to approximate a massively large data set by a small representative proxy. In particular, sensitivity sampling received a lot of attention, which samples points proportional to an individual importance measure called sensitivity. This framework reduces in very general settings the size of data to roughly the VC dimension $d$ times the total sensitivity $\mathfrak S$ while providing strong $(1\pm\varepsilon)$ guarantees on the quality of approximation. The recent work of Woodruff & Yasuda (2023c) improved substantially over the general $\tilde O(\varepsilon{-2}\mathfrak Sd)$ bound for the important problem of $\ell_p$ subspace embeddings to $\tilde O(\varepsilon{-2}\mathfrak S{2/p})$ for $p\in[1,2]$. Their result was subsumed by an earlier $\tilde O(\varepsilon{-2}\mathfrak Sd{1-p/2})$ bound which was implicitly given in the work of Chen & Derezinski (2021). We show that their result is tight when sampling according to plain $\ell_p$ sensitivities. We observe that by augmenting the $\ell_p$ sensitivities by $\ell_2$ sensitivities, we obtain better bounds improving over the aforementioned results to optimal linear $\tilde O(\varepsilon{-2}(\mathfrak S+d)) = \tilde O(\varepsilon{-2}d)$ sampling complexity for all $p \in [1,2]$. In particular, this resolves an open question of Woodruff & Yasuda (2023c) in the affirmative for $p \in [1,2]$ and brings sensitivity subsampling into the regime that was previously only known to be possible using Lewis weights (Cohen & Peng, 2015). As an application of our main result, we also obtain an $\tilde O(\varepsilon{-2}\mu d)$ sensitivity sampling bound for logistic regression, where $\mu$ is a natural complexity measure for this problem. This improves over the previous $\tilde O(\varepsilon{-2}\mu2 d)$ bound of Mai et al. (2021) which was based on Lewis weights subsampling.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: