Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Closer Look at Logical Reasoning with LLMs: The Choice of Tool Matters (2406.00284v2)

Published 1 Jun 2024 in cs.CL

Abstract: The emergence of LLMs has demonstrated promising progress in solving logical reasoning tasks effectively. Several recent approaches have proposed to change the role of the LLM from the reasoner into a translator between natural language statements and symbolic representations which are then sent to external symbolic solvers to resolve. This paradigm has established the current state-of-the-art result in logical reasoning (i.e., deductive reasoning). However, it remains unclear whether the variance in performance of these approaches stems from the methodologies employed or the specific symbolic solvers utilized. There is a lack of consistent comparison between symbolic solvers and how they influence the overall reported performance. This is important, as each symbolic solver also has its own input symbolic language, presenting varying degrees of challenge in the translation process. To address this gap, we perform experiments on 3 deductive reasoning benchmarks with LLMs augmented with widely used symbolic solvers: Z3, Pyke, and Prover9. The tool-executable rates of symbolic translation generated by different LLMs exhibit a near 50% performance variation. This highlights a significant difference in performance rooted in very basic choices of tools. The almost linear correlation between the executable rate of translations and the accuracy of the outcomes from Prover9 highlight a strong alignment between LLMs ability to translate into Prover9 symbolic language, and the correctness of those translations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com