Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Robustness of Online Proportional Response in Stochastic Online Fisher Markets: a Decentralized Approach (2406.00160v1)

Published 31 May 2024 in cs.GT

Abstract: This study is focused on periodic Fisher markets where items with time-dependent and stochastic values are regularly replenished and buyers aim to maximize their utilities by spending budgets on these items. Traditional approaches of finding a market equilibrium in the single-period Fisher market rely on complete information about buyers' utility functions and budgets. However, it is impractical to consistently enforce buyers to disclose this private information in a periodic setting. We introduce a distributed auction algorithm, online proportional response, wherein buyers update bids solely based on the randomly fluctuating values of items in each period. The market then allocates items based on the bids provided by the buyers. Utilizing the known Shmyrev convex program that characterizes market equilibrium of a Fisher market, two performance metrics are proposed: the fairness regret is the cumulative difference in the objective value of a stochastic Shmyrev convex program between an online algorithm and an offline optimum, and the individual buyer's regret gauges the deviation in terms of utility for each buyer between the online algorithm and the offline optimum. Our algorithm attains a problem-dependent upper bound contingent on the number of items and buyers under stationary inputs in fairness regret. Additionally, we conduct analysis of regret under various non-stationary stochastic input models to demonstrate the algorithm's efficiency across diverse scenarios. The online proportional response algorithm addresses privacy concerns by allowing buyers to update bids without revealing sensitive information and ensures decentralized decision-making, fostering autonomy and potential improvements in buyer satisfaction. Furthermore, our algorithm is universally applicable to many worlds and shows the robust performance guarantees.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube