Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Novel Review of Stability Techniques for Improved Privacy-Preserving Machine Learning (2406.00073v1)

Published 31 May 2024 in cs.LG and cs.CR

Abstract: Machine learning models have recently enjoyed a significant increase in size and popularity. However, this growth has created concerns about dataset privacy. To counteract data leakage, various privacy frameworks guarantee that the output of machine learning models does not compromise their training data. However, this privatization comes at a cost by adding random noise to the training process, which reduces model performance. By making models more resistant to small changes in input and thus more stable, the necessary amount of noise can be decreased while still protecting privacy. This paper investigates various techniques to enhance stability, thereby minimizing the negative effects of privatization in machine learning.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube