Papers
Topics
Authors
Recent
2000 character limit reached

Unlocking the Potential of Large Language Models for Clinical Text Anonymization: A Comparative Study (2406.00062v1)

Published 29 May 2024 in cs.CL, cs.AI, cs.CR, and cs.LG

Abstract: Automated clinical text anonymization has the potential to unlock the widespread sharing of textual health data for secondary usage while assuring patient privacy and safety. Despite the proposal of many complex and theoretically successful anonymization solutions in literature, these techniques remain flawed. As such, clinical institutions are still reluctant to apply them for open access to their data. Recent advances in developing LLMs pose a promising opportunity to further the field, given their capability to perform various tasks. This paper proposes six new evaluation metrics tailored to the challenges of generative anonymization with LLMs. Moreover, we present a comparative study of LLM-based methods, testing them against two baseline techniques. Our results establish LLM-based models as a reliable alternative to common approaches, paving the way toward trustworthy anonymization of clinical text.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: