Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mixed Diffusion for 3D Indoor Scene Synthesis (2405.21066v2)

Published 31 May 2024 in cs.CV

Abstract: Generating realistic 3D scenes is an area of growing interest in computer vision and robotics. However, creating high-quality, diverse synthetic 3D content often requires expert intervention, making it costly and complex. Recently, efforts to automate this process with learning techniques, particularly diffusion models, have shown significant improvements in tasks like furniture rearrangement. However, applying diffusion models to floor-conditioned indoor scene synthesis remains under-explored. This task is especially challenging as it requires arranging objects in continuous space while selecting from discrete object categories, posing unique difficulties for conventional diffusion methods. To bridge this gap, we present MiDiffusion, a novel mixed discrete-continuous diffusion model designed to synthesize plausible 3D indoor scenes given a floor plan and pre-arranged objects. We represent a scene layout by a 2D floor plan and a set of objects, each defined by category, location, size, and orientation. Our approach uniquely applies structured corruption across mixed discrete semantic and continuous geometric domains, resulting in a better-conditioned problem for denoising. Evaluated on the 3D-FRONT dataset, MiDiffusion outperforms state-of-the-art autoregressive and diffusion models in floor-conditioned 3D scene synthesis. Additionally, it effectively handles partial object constraints via a corruption-and-masking strategy without task-specific training, demonstrating advantages in scene completion and furniture arrangement tasks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com