Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse-Group Boosting with Balanced Selection Frequencies: A Simulation-Based Approach and R Implementation (2405.21037v2)

Published 31 May 2024 in stat.AP, stat.CO, and stat.ML

Abstract: This paper introduces a novel framework for reducing variable selection bias by balancing selection frequencies of base-learners in boosting and introduces the sgboost package in R, which implements this framework combined with sparse-group boosting. The group bias reduction algorithm employs a simulation-based approach to iteratively adjust the degrees of freedom for both individual and group base-learners, ensuring balanced selection probabilities and mitigating the tendency to over-select more complex groups. The efficacy of the group balancing algorithm is demonstrated through simulations. Sparse-group boosting offers a flexible approach for both group and individual variable selection, reducing overfitting and enhancing model interpretability for modeling high-dimensional data with natural groupings in covariates. The package uses regularization techniques based on the degrees of freedom of individual and group base-learners. Through comparisons with existing methods and demonstration of its unique functionalities, this paper provides a practical guide on utilizing sparse-group boosting in R, accompanied by code examples to facilitate its application in various research domains.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets