Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise (2405.20993v2)

Published 31 May 2024 in cs.IT, cond-mat.dis-nn, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when the noise is a Gaussian Wigner matrix, the more realistic case of structured noise still proves to be challenging. To capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally invariant noise. However, existing studies either provide sub-optimal algorithms or are limited to special cases of noise ensembles. In this paper, using tools from statistical physics (replica method) and random matrix theory (generalized spherical integrals) we establish the first characterization of the information-theoretic limits for a noise matrix drawn from a general trace ensemble. Remarkably, our analysis unveils the asymptotic equivalence between the rotationally invariant model and a surrogate Gaussian one. Finally, we show how to saturate the predicted statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-Palmer (TAP) equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: