Papers
Topics
Authors
Recent
2000 character limit reached

Information limits and Thouless-Anderson-Palmer equations for spiked matrix models with structured noise (2405.20993v2)

Published 31 May 2024 in cs.IT, cond-mat.dis-nn, cs.LG, math.IT, math.ST, and stat.TH

Abstract: We consider a prototypical problem of Bayesian inference for a structured spiked model: a low-rank signal is corrupted by additive noise. While both information-theoretic and algorithmic limits are well understood when the noise is a Gaussian Wigner matrix, the more realistic case of structured noise still proves to be challenging. To capture the structure while maintaining mathematical tractability, a line of work has focused on rotationally invariant noise. However, existing studies either provide sub-optimal algorithms or are limited to special cases of noise ensembles. In this paper, using tools from statistical physics (replica method) and random matrix theory (generalized spherical integrals) we establish the first characterization of the information-theoretic limits for a noise matrix drawn from a general trace ensemble. Remarkably, our analysis unveils the asymptotic equivalence between the rotationally invariant model and a surrogate Gaussian one. Finally, we show how to saturate the predicted statistical limits using an efficient algorithm inspired by the theory of adaptive Thouless-Anderson-Palmer (TAP) equations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.