Papers
Topics
Authors
Recent
2000 character limit reached

Solving partial differential equations with sampled neural networks (2405.20836v1)

Published 31 May 2024 in math.NA, cs.LG, and cs.NA

Abstract: Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering. Using neural networks as an ansatz for the solution has proven a challenge in terms of training time and approximation accuracy. In this contribution, we discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges. In most examples, the random sampling schemes outperform iterative, gradient-based optimization of physics-informed neural networks regarding training time and accuracy by several orders of magnitude. For time-dependent PDE, we construct neural basis functions only in the spatial domain and then solve the associated ordinary differential equation with classical methods from scientific computing over a long time horizon. This alleviates one of the greatest challenges for neural PDE solvers because it does not require us to parameterize the solution in time. For second-order elliptic PDE in Barron spaces, we prove the existence of sampled networks with $L2$ convergence to the solution. We demonstrate our approach on several time-dependent and static PDEs. We also illustrate how sampled networks can effectively solve inverse problems in this setting. Benefits compared to common numerical schemes include spectral convergence and mesh-free construction of basis functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: