Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Solving partial differential equations with sampled neural networks (2405.20836v1)

Published 31 May 2024 in math.NA, cs.LG, and cs.NA

Abstract: Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering. Using neural networks as an ansatz for the solution has proven a challenge in terms of training time and approximation accuracy. In this contribution, we discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges. In most examples, the random sampling schemes outperform iterative, gradient-based optimization of physics-informed neural networks regarding training time and accuracy by several orders of magnitude. For time-dependent PDE, we construct neural basis functions only in the spatial domain and then solve the associated ordinary differential equation with classical methods from scientific computing over a long time horizon. This alleviates one of the greatest challenges for neural PDE solvers because it does not require us to parameterize the solution in time. For second-order elliptic PDE in Barron spaces, we prove the existence of sampled networks with $L2$ convergence to the solution. We demonstrate our approach on several time-dependent and static PDEs. We also illustrate how sampled networks can effectively solve inverse problems in this setting. Benefits compared to common numerical schemes include spectral convergence and mesh-free construction of basis functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com