Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Solving partial differential equations with sampled neural networks (2405.20836v1)

Published 31 May 2024 in math.NA, cs.LG, and cs.NA

Abstract: Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering. Using neural networks as an ansatz for the solution has proven a challenge in terms of training time and approximation accuracy. In this contribution, we discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges. In most examples, the random sampling schemes outperform iterative, gradient-based optimization of physics-informed neural networks regarding training time and accuracy by several orders of magnitude. For time-dependent PDE, we construct neural basis functions only in the spatial domain and then solve the associated ordinary differential equation with classical methods from scientific computing over a long time horizon. This alleviates one of the greatest challenges for neural PDE solvers because it does not require us to parameterize the solution in time. For second-order elliptic PDE in Barron spaces, we prove the existence of sampled networks with $L2$ convergence to the solution. We demonstrate our approach on several time-dependent and static PDEs. We also illustrate how sampled networks can effectively solve inverse problems in this setting. Benefits compared to common numerical schemes include spectral convergence and mesh-free construction of basis functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: