Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Large Language Model Sentinel: LLM Agent for Adversarial Purification (2405.20770v4)

Published 24 May 2024 in cs.CL, cs.AI, and cs.CR

Abstract: Over the past two years, the use of LLMs has advanced rapidly. While these LLMs offer considerable convenience, they also raise security concerns, as LLMs are vulnerable to adversarial attacks by some well-designed textual perturbations. In this paper, we introduce a novel defense technique named LLM Sentinel (LLAMOS), which is designed to enhance the adversarial robustness of LLMs by purifying the adversarial textual examples before feeding them into the target LLM. Our method comprises two main components: a) Agent instruction, which can simulate a new agent for adversarial defense, altering minimal characters to maintain the original meaning of the sentence while defending against attacks; b) Defense guidance, which provides strategies for modifying clean or adversarial examples to ensure effective defense and accurate outputs from the target LLMs. Remarkably, the defense agent demonstrates robust defensive capabilities even without learning from adversarial examples. Additionally, we conduct an intriguing adversarial experiment where we develop two agents, one for defense and one for attack, and engage them in mutual confrontation. During the adversarial interactions, neither agent completely beat the other. Extensive experiments on both open-source and closed-source LLMs demonstrate that our method effectively defends against adversarial attacks, thereby enhancing adversarial robustness.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com