Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Large Language Models for Entity Matching (2405.20624v1)

Published 31 May 2024 in cs.CL and cs.AI

Abstract: Entity matching (EM) is a critical task in data integration, aiming to identify records across different datasets that refer to the same real-world entities. Traditional methods often rely on manually engineered features and rule-based systems, which struggle with diverse and unstructured data. The emergence of LLMs such as GPT-4 offers transformative potential for EM, leveraging their advanced semantic understanding and contextual capabilities. This vision paper explores the application of LLMs to EM, discussing their advantages, challenges, and future research directions. Additionally, we review related work on applying weak supervision and unsupervised approaches to EM, highlighting how LLMs can enhance these methods.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.