Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Leveraging Large Language Models for Entity Matching (2405.20624v1)

Published 31 May 2024 in cs.CL and cs.AI

Abstract: Entity matching (EM) is a critical task in data integration, aiming to identify records across different datasets that refer to the same real-world entities. Traditional methods often rely on manually engineered features and rule-based systems, which struggle with diverse and unstructured data. The emergence of LLMs such as GPT-4 offers transformative potential for EM, leveraging their advanced semantic understanding and contextual capabilities. This vision paper explores the application of LLMs to EM, discussing their advantages, challenges, and future research directions. Additionally, we review related work on applying weak supervision and unsupervised approaches to EM, highlighting how LLMs can enhance these methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.