Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Federated Graph Analytics with Differential Privacy (2405.20576v1)

Published 31 May 2024 in cs.CR

Abstract: Collaborative graph analysis across multiple institutions is becoming increasingly popular. Realistic examples include social network analysis across various social platforms, financial transaction analysis across multiple banks, and analyzing the transmission of infectious diseases across multiple hospitals. We define the federated graph analytics, a new problem for collaborative graph analytics under differential privacy. Although differentially private graph analysis has been widely studied, it fails to achieve a good tradeoff between utility and privacy in federated scenarios, due to the limited view of local clients and overlapping information across multiple subgraphs. Motivated by this, we first propose a federated graph analytic framework, named FEAT, which enables arbitrary downstream common graph statistics while preserving individual privacy. Furthermore, we introduce an optimized framework based on our proposed degree-based partition algorithm, called FEAT+, which improves the overall utility by leveraging the true local subgraphs. Finally, extensive experiments demonstrate that our FEAT and FEAT+ significantly outperform the baseline approach by approximately one and four orders of magnitude, respectively.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube