Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Ontology-Enhanced Representation Learning for Large Language Models (2405.20527v1)

Published 30 May 2024 in cs.CL and cs.AI

Abstract: Taking advantage of the widespread use of ontologies to organise and harmonize knowledge across several distinct domains, this paper proposes a novel approach to improve an embedding-LLM (embedding-LLM) of interest by infusing the knowledge formalized by a reference ontology: ontological knowledge infusion aims at boosting the ability of the considered LLM to effectively model the knowledge domain described by the infused ontology. The linguistic information (i.e. concept synonyms and descriptions) and structural information (i.e. is-a relations) formalized by the ontology are utilized to compile a comprehensive set of concept definitions, with the assistance of a powerful generative LLM (i.e. GPT-3.5-turbo). These concept definitions are then employed to fine-tune the target embedding-LLM using a contrastive learning framework. To demonstrate and evaluate the proposed approach, we utilize the biomedical disease ontology MONDO. The results show that embedding-LLMs enhanced by ontological disease knowledge exhibit an improved capability to effectively evaluate the similarity of in-domain sentences from biomedical documents mentioning diseases, without compromising their out-of-domain performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.