Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Private Mean Estimation with Person-Level Differential Privacy (2405.20405v3)

Published 30 May 2024 in cs.DS, cs.CR, cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We study person-level differentially private (DP) mean estimation in the case where each person holds multiple samples. DP here requires the usual notion of distributional stability when $\textit{all}$ of a person's datapoints can be modified. Informally, if $n$ people each have $m$ samples from an unknown $d$-dimensional distribution with bounded $k$-th moments, we show that [n = \tilde \Theta\left(\frac{d}{\alpha2 m} + \frac{d}{\alpha m{1/2} \varepsilon} + \frac{d}{\alpha{k/(k-1)} m \varepsilon} + \frac{d}{\varepsilon}\right)] people are necessary and sufficient to estimate the mean up to distance $\alpha$ in $\ell_2$-norm under $\varepsilon$-differential privacy (and its common relaxations). In the multivariate setting, we give computationally efficient algorithms under approximate-DP and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP. Our computationally efficient estimators are based on the standard clip-and-noise framework, but the analysis for our setting requires both new algorithmic techniques and new analyses. In particular, our new bounds on the tails of sums of independent, vector-valued, bounded-moments random variables may be of interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: