Emergent Mind

Sphere packing proper colorings of an expander graph

(2405.20368)
Published May 30, 2024 in math.CO , cs.IT , and math.IT

Abstract

We introduce a new notion of error-correcting codes on $[q]n$ where a code is a set of proper $q$-colorings of some fixed $n$-vertex graph $G$. For a pair of proper $q$-colorings $X, Y$ of $G$, we define their distance as the minimum Hamming distance between $X$ and $\sigma(Y)$ over all $\sigma \in Sq$. We then say that a set of proper $q$-colorings of $G$ is $\delta$-distinct if any pair of colorings in the set have distance at least $\delta n$. We investigate how one-sided spectral expansion relates to the largest possible set of $\delta$-distinct colorings on a graph. For fixed $(\delta, \lambda) \in [0, 1] \times [-1, 1]$ and positive integer $d$, let $f{\delta, \lambda, d}(n)$ denote the maximal size of a set of $\delta$-distinct colorings of any $d$-regular graph on at most $n$ vertices with normalized second eigenvalue at most $\lambda$. We study the growth of $f$ as $n$ goes to infinity. We partially characterize regimes of $(\delta, \lambda)$ where $f$ grows exponentially, is finite, and is at most $1$, respectively. We also prove several sharp phase transitions between these regimes.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.