Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Geometrical mixed finite element methods for fourth order obstacle problems in linearised elasticity (2405.20338v2)

Published 30 May 2024 in math.NA and cs.NA

Abstract: This paper is devoted to the study of a novel mixed Finite Element Method for approximating the solutions of fourth order variational problems subjected to a constraint. The first problem we consider consists in establishing the convergence of the error of the numerical approximation of the solution of a biharmonic obstacle problem. The contents of this section are meant to generalise the approach originally proposed by Ciarlet & Raviart, and then complemented by Ciarlet & Glowinski. The second problem we consider amounts to studying a two-dimensional variational problem for linearly elastic shallow shells subjected to remaining confined in a prescribed half-space. We first study the case where the parametrisation of the middle surface for the linearly elastic shallow shell under consideration has non-zero curvature, and we observe that the numerical approximation of this model via a mixed Finite Element Method based on conforming elements requires the implementation of the additional constraint according to which the gradient matrix of the dual variable has to be symmetric. However, differently from the biharmonic obstacle problem previously studied, we show that the numerical implementation of this result cannot be implemented by solely resorting to Courant triangles. Finally, we show that if the middle surface of the linearly elastic shallow shell under consideration is flat, the symmetry constraint required for formulating the constrained mixed variational problem announced in the second part of the paper is not required, and the solution can thus be approximated by solely resorting to Courant triangles. The theoretical results we derived are complemented by a series of numerical experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube