Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fill in the Gap! Combining Self-supervised Representation Learning with Neural Audio Synthesis for Speech Inpainting (2405.20101v1)

Published 30 May 2024 in cs.SD, cs.CL, and eess.AS

Abstract: Most speech self-supervised learning (SSL) models are trained with a pretext task which consists in predicting missing parts of the input signal, either future segments (causal prediction) or segments masked anywhere within the input (non-causal prediction). Learned speech representations can then be efficiently transferred to downstream tasks (e.g., automatic speech or speaker recognition). In the present study, we investigate the use of a speech SSL model for speech inpainting, that is reconstructing a missing portion of a speech signal from its surrounding context, i.e., fulfilling a downstream task that is very similar to the pretext task. To that purpose, we combine an SSL encoder, namely HuBERT, with a neural vocoder, namely HiFiGAN, playing the role of a decoder. In particular, we propose two solutions to match the HuBERT output with the HiFiGAN input, by freezing one and fine-tuning the other, and vice versa. Performance of both approaches was assessed in single- and multi-speaker settings, for both informed and blind inpainting configurations (i.e., the position of the mask is known or unknown, respectively), with different objective metrics and a perceptual evaluation. Performances show that if both solutions allow to correctly reconstruct signal portions up to the size of 200ms (and even 400ms in some cases), fine-tuning the SSL encoder provides a more accurate signal reconstruction in the single-speaker setting case, while freezing it (and training the neural vocoder instead) is a better strategy when dealing with multi-speaker data.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 10 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube