Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Variationally Correct Neural Residual Regression for Parametric PDEs: On the Viability of Controlled Accuracy (2405.20065v1)

Published 30 May 2024 in math.NA and cs.NA

Abstract: This paper is about learning the parameter-to-solution map for systems of partial differential equations (PDEs) that depend on a potentially large number of parameters covering all PDE types for which a stable variational formulation (SVF) can be found. A central constituent is the notion of variationally correct residual loss function meaning that its value is always uniformly proportional to the squared solution error in the norm determined by the SVF, hence facilitating rigorous a posteriori accuracy control. It is based on a single variational problem, associated with the family of parameter dependent fiber problems, employing the notion of direct integrals of Hilbert spaces. Since in its original form the loss function is given as a dual test norm of the residual a central objective is to develop equivalent computable expressions. A first critical role is played by hybrid hypothesis classes, whose elements are piecewise polynomial in (low-dimensional) spatio-temporal variables with parameter-dependent coefficients that can be represented, e.g. by neural networks. Second, working with first order SVFs, we distinguish two scenarios: (i) the test space can be chosen as an $L_2$-space (e.g. for elliptic or parabolic problems) so that residuals live in $L_2$ and can be evaluated directly; (ii) when trial and test spaces for the fiber problems (e.g. for transport equations) depend on the parameters, we use ultraweak formulations. In combination with Discontinuous Petrov Galerkin concepts the hybrid format is then instrumental to arrive at variationally correct computable residual loss functions. Our findings are illustrated by numerical experiments representing (i) and (ii), namely elliptic boundary value problems with piecewise constant diffusion coefficients and pure transport equations with parameter dependent convection field.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube